首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Weighted Linear Matroid Parity
  • 本地全文:下载
  • 作者:Satoru Iwata
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:92
  • 页码:1:1-1:5
  • DOI:10.4230/LIPIcs.ISAAC.2017.1
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The matroid parity (or matroid matching) problem, introduced as a common generalization of matching and matroid intersection problems, is so general that it requires an exponential number of oracle calls. Nevertheless, Lovasz (1978) showed that this problem admits a min-max formula and a polynomial algorithm for linearly represented matroids. Since then efficient algorithms have been developed for the linear matroid parity problem. This talk presents a recently developed polynomial-time algorithm for the weighted linear matroid parity problem. The algorithm builds on a polynomial matrix formulation using Pfaffian and adopts a primal-dual approach based on the augmenting path algorithm of Gabow and Stallmann (1986) for the unweighted problem.
  • 关键词:Matroid; matching; Pfaffian; polynomial-time algorithm
国家哲学社会科学文献中心版权所有