首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Satisfiable Tseitin Formulas Are Hard for Nondeterministic Read-Once Branching Programs
  • 本地全文:下载
  • 作者:Ludmila Glinskih ; Dmitry Itsykson
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:83
  • 页码:26:1-26:12
  • DOI:10.4230/LIPIcs.MFCS.2017.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider satisfiable Tseitin formulas TS_{G,c} based on d-regular expanders G with the absolute value of the second largest eigenvalue less than d/3. We prove that any nondeterministic read-once branching program (1-NBP) representing TS_{G,c} has size 2^{\Omega(n)}, where n is the number of vertices in G. It extends the recent result by Itsykson at el. [STACS 2017] from OBDD to 1-NBP. On the other hand it is easy to see that TS_{G,c} can be represented as a read-2 branching program (2-BP) of size O(n), as the negation of a nondeterministic read-once branching program (1-coNBP) of size O(n) and as a CNF formula of size O(n). Thus TS_{G,c} gives the best possible separations (up to a constant in the exponent) between 1-NBP and 2-BP, 1-NBP and 1-coNBP and between 1-NBP and CNF.
  • 关键词:Tseitin formula; read-once branching program; expander
国家哲学社会科学文献中心版权所有