首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:An Efficient Fixed-Parameter Algorithm for the 2-Plex Bipartition Problem
  • 本地全文:下载
  • 作者:Li-Hsuan Chen ; Sun-Yuan Hsieh ; Ling-Ju Hung
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:92
  • 页码:20:1-20:13
  • DOI:10.4230/LIPIcs.ISAAC.2017.20
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a graph G=(V, E), an s-plex S\subseteq V is a vertex subset such that for v\in S the degree of v in G[S] is at least |S|-s. An s-plex bipartition \mathcal{P}=(V_1, V_2) is a bipartition of G=(V, E), V=V_1\uplus V_2, satisfying that both V_1 and V_2 are s-plexes. Given an instance G=(V, E) and a parameter k, the s-Plex Bipartition problem asks whether there exists an s-plex bipartition of G such that min{|V_1|, |V_2|\}\leq k. The s-Plex Bipartition problem is NP-complete. However, it is still open whether this problem is fixed-parameter tractable. In this paper, we give a fixed-parameter algorithm for 2-Plex Bipartition running in time O*(2.4143^k). A graph G = (V, E) is called defective (p, d)-colorable if it admits a vertex coloring with p colors such that each color class in G induces a subgraph of maximum degree at most d. A graph G admits an s-plex bipartition if and only if the complement graph of G, \bar{G}, admits a defective (2, s-1)-coloring such that one of the two color classes is of size at most k. By applying our fixed-parameter algorithm as a subroutine, one can find a defective (2,1)-coloring with one of the two colors of minimum cardinality for a given graph in O*(1.5539^n) time where n is the number of vertices in the input graph.
  • 关键词:2-plex; 2-plex bipartition; bounded-degree-1 set bipartition; defective (2;1)-coloring
国家哲学社会科学文献中心版权所有