首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Fine-Grained Complexity of Rainbow Coloring and its Variants
  • 本地全文:下载
  • 作者:Akanksha Agrawal
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:83
  • 页码:60:1-60:14
  • DOI:10.4230/LIPIcs.MFCS.2017.60
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Consider a graph G and an edge-coloring c_R:E(G) \rightarrow [k]. A rainbow path between u,v \in V(G) is a path P from u to v such that for all e,e' \in E(P), where e \neq e' we have c_R(e) \neq c_R(e'). In the Rainbow k-Coloring problem we are given a graph G, and the objective is to decide if there exists c_R: E(G) \rightarrow [k] such that for all u,v \in V(G) there is a rainbow path between u and v in G. Several variants of Rainbow k-Coloring have been studied, two of which are defined as follows. The Subset Rainbow k-Coloring takes as an input a graph G and a set S \subseteq V(G) \times V(G), and the objective is to decide if there exists c_R: E(G) \rightarrow [k] such that for all (u,v) \in S there is a rainbow path between u and v in G. The problem Steiner Rainbow k-Coloring takes as an input a graph G and a set S \subseteq V(G), and the objective is to decide if there exists c_R: E(G) \rightarrow [k] such that for all u,v \in S there is a rainbow path between u and v in G. In an attempt to resolve open problems posed by Kowalik et al. (ESA 2016), we obtain the following results. - For every k \geq 3, Rainbow k-Coloring does not admit an algorithm running in time 2^{o(|E(G)|)}n^{O(1)}, unless ETH fails. - For every k \geq 3, Steiner Rainbow k-Coloring does not admit an algorithm running in time 2^{o(|S|^2)}n^{O(1)}, unless ETH fails. - Subset Rainbow k-Coloring admits an algorithm running in time 2^{\OO(|S|)}n^{O(1)}. This also implies an algorithm running in time 2^{o(|S|^2)}n^{O(1)} for Steiner Rainbow k-Coloring, which matches the lower bound we obtain.
  • 关键词:Rainbow Coloring; Lower bound; ETH; Fine-grained Complexity
国家哲学社会科学文献中心版权所有