首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:An Improved FPT Algorithm for the Flip Distance Problem
  • 本地全文:下载
  • 作者:Shaohua Li ; Qilong Feng ; Xiangzhong Meng
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:83
  • 页码:65:1-65:13
  • DOI:10.4230/LIPIcs.MFCS.2017.65
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a set \cal P of points in the Euclidean plane and two triangulations of \cal P, the flip distance between these two triangulations is the minimum number of flips required to transform one triangulation into the other. The Parameterized Flip Distance problem is to decide if the flip distance between two given triangulations is equal to a given integer k. The previous best FPT algorithm runs in time O^*(k\cdot c^k) (c\leq 2\times 14^11), where each step has fourteen possible choices, and the length of the action sequence is bounded by 11k. By applying the backtracking strategy and analyzing the underlying property of the flip sequence, each step of our algorithm has only five possible choices. Based on an auxiliary graph G, we prove that the length of the action sequence for our algorithm is bounded by 2|G|. As a result, we present an FPT algorithm running in time O^*(k\cdot 32^k).
  • 关键词:triangulation; flip distance; FPT algorithm
国家哲学社会科学文献中心版权所有