首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Nash Social Welfare, Matrix Permanent, and Stable Polynomials
  • 本地全文:下载
  • 作者:Nima Anari ; Shayan Oveis Gharan ; Amin Saberi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:67
  • 页码:36:1-36:12
  • DOI:10.4230/LIPIcs.ITCS.2017.36
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of allocating m items to n agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a 1/e approximation factor of the objective, breaking the 1/2e^(1/e) approximation factor of Cole and Gkatzelis. Our main technical contribution is an extension of Gurvits's lower bound on the coefficient of the square-free monomial of a degree m-homogeneous stable polynomial on m variables to all homogeneous polynomials. We use this extension to analyze the expected welfare of the allocation returned by our randomized rounding algorithm.
  • 关键词:Nash Welfare; Permanent; Matching; Stable Polynomial; Randomized Algorithm; Saddle Point
国家哲学社会科学文献中心版权所有