首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent
  • 本地全文:下载
  • 作者:Zeyuan Allen-Zhu ; Lorenzo Orecchia
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:67
  • 页码:3:1-3:22
  • DOI:10.4230/LIPIcs.ITCS.2017.3
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:First-order methods play a central role in large-scale machine learning. Even though many variations exist, each suited to a particular problem, almost all such methods fundamentally rely on two types of algorithmic steps: gradient descent, which yields primal progress, and mirror descent, which yields dual progress. We observe that the performances of gradient and mirror descent are complementary, so that faster algorithms can be designed by "linearly coupling" the two. We show how to reconstruct Nesterov's accelerated gradient methods using linear coupling, which gives a cleaner interpretation than Nesterov's original proofs. We also discuss the power of linear coupling by extending it to many other settings that Nesterov's methods cannot apply to.
  • 关键词:linear coupling; gradient descent; mirror descent; acceleration
国家哲学社会科学文献中心版权所有