首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Constructive Non-Commutative Rank Computation Is in Deterministic Polynomial Time
  • 本地全文:下载
  • 作者:G{\'a}bor Ivanyos ; Youming Qiao ; K Venkata Subrahmanyam
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:67
  • 页码:55:1-55:19
  • DOI:10.4230/LIPIcs.ITCS.2017.55
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let {\mathcal B} be a linear space of matrices over a field {\mathbb spanned by n\times n matrices B_1, \dots, B_m. The non-commutative rank of {\mathcal B}$ is the minimum r\in {\mathbb N} such that there exists U\leq {\mathbb F}^n satisfying \dim(U)-\dim( {\mathcal B} (U))\geq n-r, where {\mathcal B}(U):={\mathrm span}(\cup_{i\in[m]} B_i(U)). Computing the non-commutative rank generalizes some well-known problems including the bipartite graph maximum matching problem and the linear matroid intersection problem. In this paper we give a deterministic polynomial-time algorithm to compute the non-commutative rank over any field {\mathbb F}. Prior to our work, such an algorithm was only known over the rational number field {\mathbb Q}, a result due to Garg et al, [GGOW]. Our algorithm is constructive and produces a witness certifying the non-commutative rank, a feature that is missing in the algorithm from [GGOW]. Our result is built on techniques which we developed in a previous paper [IQS1], with a new reduction procedure that helps to keep the blow-up parameter small. There are two ways to realize this reduction. The first involves constructivizing a key result of Derksen and Makam [DM2] which they developed in order to prove that the null cone of matrix semi-invariants is cut out by generators whose degree is polynomial in the size of the matrices involved. We also give a second, simpler method to achieve this. This gives another proof of the polynomial upper bound on the degree of the generators cutting out the null cone of matrix semi-invariants. Both the invariant-theoretic result and the algorithmic result rely crucially on the regularity lemma proved in [IQS1]. In this paper we improve on the constructive version of the regularity lemma from [IQS1] by removing a technical coprime condition that was assumed there.
  • 关键词:invariant theory; non-commutative rank; null cone; symbolic determinant identity testing; semi-invariants of quivers
国家哲学社会科学文献中心版权所有