首页    期刊浏览 2025年12月24日 星期三
登录注册

文章基本信息

  • 标题:Capacity of Neural Networks and Discriminant Analysis in Classifying Potential Debtors
  • 本地全文:下载
  • 作者:Prof. Krzysztof Piasecki ; Aleksandra Wójcicka-Wójtowicz
  • 期刊名称:Folia Oeconomica Stetinensia
  • 印刷版ISSN:1730-4237
  • 电子版ISSN:1898-0198
  • 出版年度:2017
  • 卷号:17
  • 期号:2
  • 页码:129-143
  • DOI:10.1515/foli-2017-0023
  • 出版社:Walter de Gruyter GmbH
  • 摘要:

    Identifying potential healthy and unsound customers is an important task. The reduction of loans granted to companies of questionable credibility can influence banks’ performance. A prior identification of factors that affect the condition of companies is a vital element. Among the most commonly used methods we can enumerate discriminant analysis (DA), scoring methods, neural networks (NN), etc. This paper investigates the use of different structure NN and DA in the process of the classification of banks’ potential clients. The results of those different methods are juxtaposed and their performance compared.

  • 关键词:credit risk ; default ; neural networks ; discriminant analysis ; financial indices JEL Classification: G33 ; C38 ; C49
国家哲学社会科学文献中心版权所有