期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2017
卷号:15
期号:2
页码:756-762
DOI:10.12928/telkomnika.v15i1.6113
出版社:Universitas Ahmad Dahlan
其他摘要:In this paper, a new gender recognition framework based on fusion of features extracted from healthy people electromyogram (EMG) and heart rate variability (HRV) during stepping activity using a stepper machine is proposed. An approach is investigated for the fusion of EMG and HRV which is feature fusion. The feature fusion is carried out by concatenating the feature vector extracted from the EMG and HRV signals. A proposed framework consists of a sequence of processing steps which are preprocessing, feature extraction, feature selection and lastly the fusion. The results shown that the fusion approach had improved the performance of gender recognition compared to solely on EMG or HRV based gender identifier.