期刊名称:Applied Computational Intelligence and Soft Computing
印刷版ISSN:1687-9724
电子版ISSN:1687-9732
出版年度:2018
卷号:2018
DOI:10.1155/2018/4084850
出版社:Hindawi Publishing Corporation
摘要:One way to make the knowledge stored in an artificial neural network more intelligible is to extract symbolic rules. However, producing rules from Multilayer Perceptrons (MLPs) is an NP-hard problem. Many techniques have been introduced to generate rules from single neural networks, but very few were proposed for ensembles. Moreover, experiments were rarely assessed by 10-fold cross-validation trials. In this work, based on the Discretized Interpretable Multilayer Perceptron (DIMLP), experiments were performed on 10 repetitions of stratified 10-fold cross-validation trials over 25 binary classification problems. The DIMLP architecture allowed us to produce rules from DIMLP ensembles, boosted shallow trees (BSTs), and Support Vector Machines (SVM). The complexity of rulesets was measured with the average number of generated rules and average number of antecedents per rule. From the 25 used classification problems, the most complex rulesets were generated from BSTs trained by “gentle boosting” and “real boosting.” Moreover, we clearly observed that the less complex the rules were, the better their fidelity was. In fact, rules generated from decision stumps trained by modest boosting were, for almost all the 25 datasets, the simplest with the highest fidelity. Finally, in terms of average predictive accuracy and average ruleset complexity, the comparison of some of our results to those reported in the literature proved to be competitive.