期刊名称:Applied Computational Intelligence and Soft Computing
印刷版ISSN:1687-9724
电子版ISSN:1687-9732
出版年度:2017
卷号:2017
DOI:10.1155/2017/9571262
出版社:Hindawi Publishing Corporation
摘要:This paper presents a two-dimensional wavelet based decomposition algorithm for classification of biomedical images. The two-dimensional wavelet decomposition is done up to five levels for the input images. Histograms of decomposed images are then used to form the feature set. This feature set is further reduced using probabilistic principal component analysis. The reduced set of features is then fed into either nearest neighbor algorithm or feed-forward artificial neural network, to classify images. The algorithm is compared with three other techniques in terms of accuracy. The proposed algorithm has been found better up to 3.3%, 12.75%, and 13.75% on average over the first, second, and third algorithm, respectively, using KNN and up to 6.22%, 13.9%, and 14.1% on average using ANN. The dataset used for comparison consisted of CT Scan images of lungs and MR images of heart as obtained from different sources.