首页    期刊浏览 2024年11月22日 星期五
登录注册

文章基本信息

  • 标题:Selection of the Optimal Algorithm for Real-Time Estimation of Beta Band Power during DBS Surgeries in Patients with Parkinson’s Disease
  • 本地全文:下载
  • 作者:Ángeles Tepper ; Mauricio Carlos Henrich ; Luciano Schiaffino
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/1512504
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Deep Brain Stimulation (DBS) is a surgical procedure for the treatment of motor disorders in patients with Parkinson’s Disease (PD). DBS involves the application of controlled electrical stimuli to a given brain structure. The implantation of the electrodes for DBS is performed by a minimally invasive stereotactic surgery where neuroimaging and microelectrode recordings (MER) are used to locate the target brain structure. The Subthalamic Nucleus (STN) is often chosen for the implantation of stimulation electrodes in DBS therapy. During the surgery, an intraoperative validation is performed to locate the dorsolateral region of STN. Patients with PD reveal a high power in the band (frequencies between 13 Hz and 35 Hz) in MER signal, mainly in the dorsolateral region of STN. In this work, different power spectrum density methods were analyzed with the aim of selecting one that minimizes the calculation time to be used in real time during DBS surgery. In particular, the results of three nonparametric and one parametric methods were compared, each with different sets of parameters. It was concluded that the optimum method to perform the real-time spectral estimation of beta band from MER signal is Welch with Hamming windows of 1.5 seconds and 50% overlap.
国家哲学社会科学文献中心版权所有