摘要:A new three-parameter generalized distribution, namely, half-logistic generalized Weibull (HLGW) distribution, is proposed. The proposed distribution exhibits increasing, decreasing, bathtub-shaped, unimodal, and decreasing-increasing-decreasing hazard rates. The distribution is a compound distribution of type I half-logistic-G and Dimitrakopoulou distribution. The new model includes half-logistic Weibull distribution, half-logistic exponential distribution, and half-logistic Nadarajah-Haghighi distribution as submodels. Some distributional properties of the new model are investigated which include the density function shapes and the failure rate function, raw moments, moment generating function, order statistics, L-moments, and quantile function. The parameters involved in the model are estimated using the method of maximum likelihood estimation. The asymptotic distribution of the estimators is also investigated via Fisher’s information matrix. The likelihood ratio (LR) test is used to compare the HLGW distribution with its submodels. Some applications of the proposed distribution using real data sets are included to examine the usefulness of the distribution.