首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Electric-Pneumatic Actuator: A New Muscle for Locomotion
  • 本地全文:下载
  • 作者:Maziar Ahmad Sharbafi ; Hirofumi Shin
  • 期刊名称:Actuators
  • 电子版ISSN:2076-0825
  • 出版年度:2017
  • 卷号:6
  • 期号:4
  • 页码:30
  • DOI:10.3390/act6040030
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections) which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA) as an enhanced variable impedance actuator (VIA). EPA is consisted of a pneumatic artificial muscle (PAM) and an electric motor (EM). In contrast to other VIAs, the pneumatic artificial muscle (PAM) within the EPA provides not only adaptable compliance, but also an additional powerful actuator with muscle-like properties, which can be arranged in different combinations (e.g., in series or parallel) to the EM. The novel hybrid actuator shares the advantages of both integrated actuator types combining precise control of EM with compliant energy storage of PAM, which are required for efficient and adjustable locomotion. Experimental and simulation results based on the new dynamic model of PAM support the hypothesis that combination of the two actuators can improve efficiency (energy and peak power) and performance, while does not increase control complexity and weight, considerably. Finally, the experiments on EPA adapted bipedal robot (knee joint of the BioBiped3 robot) show improved efficiency of the actuator at different frequencies.
  • 关键词:hybrid actuator; variable impedance actuator (VIA); pneumatic artificial muscle (PAM); electric motors; legged locomotion hybrid actuator ; variable impedance actuator (VIA) ; pneumatic artificial muscle (PAM) ; electric motors ; legged locomotion
国家哲学社会科学文献中心版权所有