首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution
  • 本地全文:下载
  • 作者:Yifan Dai
  • 期刊名称:Biosensors
  • 电子版ISSN:2079-6374
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:4
  • DOI:10.3390/bios8010004
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:A cuprous oxide (Cu2O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS) and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum), interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O) thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.
  • 关键词:cuprous oxide; non-enzymatic glucose sensor; alkaline solution; differential pulse voltammetry cuprous oxide ; non-enzymatic glucose sensor ; alkaline solution ; differential pulse voltammetry
国家哲学社会科学文献中心版权所有