首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products
  • 本地全文:下载
  • 作者:Amy M. Green ; Victoria P. Barber ; Yi Fang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:47
  • 页码:12372-12377
  • DOI:10.1073/pnas.1715014114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH3CHOO. IR excitation of selectively deuterated syn -CD3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.
  • 关键词:Criegee intermediates ; unimolecular decay ; quantum mechanical tunneling ; kinetic isotope effect ; atmospheric chemistry
国家哲学社会科学文献中心版权所有