首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Testing Ising Models
  • 本地全文:下载
  • 作者:Constantinos Daskalakis ; Nishanth Dikkala ; Gautam Kamath
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2017
  • 卷号:2017
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    Given samples from an unknown multivariate distribution p , is it possible to distinguish whether p is the product of its marginals versus p being far from every product distribution? Similarly, is it possible to distinguish whether p equals a given distribution q versus p and q being far from each other? These problems of testing independence and goodness-of-fit have received enormous attention in statistics, information theory, and theoretical computer science, with sample-optimal algorithms known in several interesting regimes of parameters. Unfortunately, it has also been understood that these problems become intractable in large dimensions, necessitating exponential sample complexity. Motivated by the exponential lower bounds for general distributions as well as the ubiquity of Markov Random Fields (MRFs) in the modeling of high-dimensional distributions, we initiate the study of distribution testing on structured multivariate distributions, and in particular the prototypical example of MRFs: the Ising Model. We demonstrate that, in this structured setting, we can avoid the curse of dimensionality, obtaining sample and time efficient testers for independence and goodness-of-fit. One of the key technical challenges we face along the way is bounding the variance of functions of the Ising model.

国家哲学社会科学文献中心版权所有