首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Efficient Identity Testing and Polynomial Factorization over Non-associative Free Rings
  • 本地全文:下载
  • 作者:Vikraman Arvind ; Rajit Datta ; Partha Mukhopadhyay
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2017
  • 卷号:2017
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    In this paper we study arithmetic computations in the nonassociative, and noncommutative free polynomial ring F x 1 x 2 x n . Prior to this work, nonassociative arithmetic computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10], and they showed lower bounds and proved completeness results. We consider Polynomial Identity Testing (PIT) and polynomial factorization over F x 1 x 2 x n and show the following results.

    (1) Given an arithmetic circuit C of size s computing a polynomial f F x 1 x 2 x n of degree d , we give a deterministic pol y ( n s d ) algorithm to decide if f is identically zero polynomial or not. Our result is obtained by a suitable adaptation of the PIT algorithm of Raz-Shpilka [RS05] for noncommutative ABPs.

    (2)Given an arithmetic circuit C of size s computing a polynomial f F x 1 x 2 x n of degree d , we give an efficient deterministic algorithm to compute circuits for the irreducible factors of f in time pol y ( n s d ) when F = Q . Over finite fields of characteristic p , our algorithm runs in time pol y ( n s d p ) .

国家哲学社会科学文献中心版权所有