首页    期刊浏览 2025年04月12日 星期六
登录注册

文章基本信息

  • 标题:Hardness of learning noisy halfspaces using polynomial thresholds
  • 本地全文:下载
  • 作者:Arnab Bhattacharyya ; Suprovat Ghoshal ; Rishi Saket
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2017
  • 卷号:2017
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We prove the hardness of weakly learning halfspaces in the presence of adversarial noise using polynomial threshold functions (PTFs). In particular, we prove that for any constants d Z + and 0"> 0 , it is NP-hard to decide: given a set of − 1 1 -labeled points in R n whether (YES Case) there exists a halfspace that classifies (1 − ) -fraction of the points correctly, or (NO Case) any degree- d PTF classifies at most (1 2 + ) -fraction of the points correctly. This strengthens to all constant degrees the previous NP-hardness of learning using degree- 2 PTFs shown by Diakonikolas et al. (2011). The latter result had remained the only progress over the works of Feldman et al. (2006) and Guruswami et al. (2006) ruling out weakly proper learning adversarially noisy halfspaces.

  • 关键词:Halfspaces ; Polynomial threshold functions
国家哲学社会科学文献中心版权所有