首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Sharp Bounds for Generalized Uniformity Testing
  • 本地全文:下载
  • 作者:Ilias Diakonikolas ; Daniel Kane ; Alistair Stewart
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2017
  • 卷号:2017
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We study the problem of {\em generalized uniformity testing}~\cite{BC17} of a discrete probability distribution: Given samples from a probability distribution p over an {\em unknown} discrete domain , we want to distinguish, with probability at least 2 3 , between the case that p is uniform on some {\em subset} of versus -far, in total variation distance, from any such uniform distribution.

    We establish tight bounds on the sample complexity of generalized uniformity testing. In more detail, we present a computationally efficient tester whose sample complexity is optimal, up to constant factors, and a matching information-theoretic lower bound. Specifically, we show that the sample complexity of generalized uniformity testing is 1 ( 4 3 p 3 ) + 1 ( 2 p 2 ) .

  • 关键词:distribution testing ; generalized uniformity testing
国家哲学社会科学文献中心版权所有