首页    期刊浏览 2025年07月28日 星期一
登录注册

文章基本信息

  • 标题:An EM Algorithm for Double-Pareto-Lognormal Generalized Linear Model Applied to Heavy-Tailed Insurance Claims
  • 本地全文:下载
  • 作者:Calderín-Ojeda, Enrique ; Fergusson, Kevin ; Wu, Xueyuan
  • 期刊名称:Risks
  • 印刷版ISSN:2227-9091
  • 出版年度:2017
  • 卷号:5
  • 期号:4
  • 页码:1-24
  • 出版社:MDPI, Open Access Journal
  • 摘要:Generalized linear models might not be appropriate when the probability of extreme events is higher than that implied by the normal distribution. Extending the method for estimating the parameters of a double Pareto lognormal distribution (DPLN) in Reed and Jorgensen (2004), we develop an EM algorithm for the heavy-tailed Double-Pareto-lognormal generalized linear model. The DPLN distribution is obtained as a mixture of a lognormal distribution with a double Pareto distribution. In this paper the associated generalized linear model has the location parameter equal to a linear predictor which is used to model insurance claim amounts for various data sets. The performance is compared with those of the generalized beta (of the second kind) and lognorma distributions.
  • 关键词:insurance claim; double Pareto lognormal distribution; heavy-tailed; generalized beta distribution of the second kind; EM algorithm
国家哲学社会科学文献中心版权所有