首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Experimental Investigation about the Integration of Facial Dynamics in Video-Based Face Recognition
  • 作者:Abdenour Hadid ; Matti Pietikainen
  • 期刊名称:ELCVIA: electronic letters on computer vision and image analysis
  • 印刷版ISSN:1577-5097
  • 出版年度:2005
  • 卷号:5
  • 期号:1
  • 页码:1-13
  • DOI:10.5565/rev/elcvia.80
  • 出版社:Centre de Visió per Computador
  • 摘要:Recent psychological and neural studies indicate that when people talk their changing facial expressions and head movements provide a dynamic cue for recognition. Therefore, both fixed facial features and dynamic personal characteristics are used in the human visual system (HVS) to recognize faces. However, most automatic recognition systems use only the static information as it is unclear how the dynamic cue can be integrated and exploited. The few works attempting to combine facial structure and its dynamics do not consider the relative importance of these two cues. They rather combine the two cues in an adhoc manner. But what is the relative importance of these two cues separately? Does combining them enhance systematically the recognition performance? To date, no work has extensively studied these issues. In this article, we investigate these issues by analyzing the effects of incorporating the dynamic information in video-based automatic face recognition. We consider two factors (face sequence length and image quality) and study their effects on the performance of video-based systems that attempt to use a spatio-temporal representation instead of one based on a still image. We experiment with two different databases and consider HMM (the temporal hidden Markov model) and ARMA (the auto-regressive and moving average model) as baseline methods for the spatio-temporal representation and PCA and LDA for the image-based one. The extensive experimental results show that motion information enhances also automatic recognition but not in a systematic way as in the HVS.
  • 其他摘要:Recent psychological and neural studies indicate that when people talk their changing facial expressions and head movements provide a dynamic cue for recognition. Therefore, both fixed facial features and dynamic personal characteristics are used in the human visual system (HVS) to recognize faces. However, most automatic recognition systems use only the static information as it is unclear how the dynamic cue can be integrated and exploited. The few works attempting to combine facial structure and its dynamics do not consider the relative importance of these two cues. They rather combine the two cues in an adhoc manner. But what is the relative importance of these two cues separately? Does combining them enhance systematically the recognition performance? To date, no work has extensively studied these issues. In this article, we investigate these issues by analyzing the effects of incorporating the dynamic information in video-based automatic face recognition. We consider two factors (face sequence length and image quality) and study their effects on the performance of video-based systems that attempt to use a spatio-temporal representation instead of one based on a still image. We experiment with two different databases and consider HMM (the temporal hidden Markov model) and ARMA (the auto-regressive and moving average model) as baseline methods for the spatio-temporal representation and PCA and LDA for the image-based one. The extensive experimental results show that motion information enhances also automatic recognition but not in a systematic way as in the HVS. keywords: face and gesture recognition
  • 关键词:face and gesture recognition
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有