期刊名称:ELCVIA: electronic letters on computer vision and image analysis
印刷版ISSN:1577-5097
出版年度:2017
卷号:16
期号:1
页码:54-67
DOI:10.5565/rev/elcvia.1058
语种:English
出版社:Centre de Visió per Computador
摘要:In this paper, we propose a novel appearance based local feature extraction technique called Local Mean Binary Pattern (LMBP), which efficiently encodes the local texture and global shape of the face. LMBP code is produced by weighting the thresholded neighbor intensity values with respect to mean of 3 x 3 patch. LMBP produces highly discriminative code compared to other state of the art methods. The micro pattern is derived using the mean of the patch, and hence it is robust against illumination and noise variations. An image is divided into M x N regions and feature descriptor is derived by concatenating LMBP distribution of each region. We also propose a novel template matching strategy called Histogram Normalized Absolute Difference (HNAD) for comparing LMBP histograms. Rigorous experiments prove the effectiveness and robustness of LMBP operator. Experiments also prove the superiority of HNAD measure over well-known template matching methods such as L2 norm and Chi-Square measure. We also investigated LMBP for facial expression recognition low resolution. The performance of the proposed approach is tested on well-known datasets CK, JAFFE, and TFEID.
其他摘要:In this paper, we propose a novel appearance based local feature extraction technique called Local Mean Binary Pattern (LMBP), which efficiently encodes the local texture and global shape of the face. LMBP code is produced by weighting the thresholded neighbor intensity values with respect to mean of 3 x 3 patch. LMBP produces highly discriminative code compared to other state of the art methods. The micro pattern is derived using the mean of the patch, and hence it is robust against illumination and noise variations. An image is divided into M x N regions and feature descriptor is derived by concatenating LMBP distribution of each region. We also propose a novel template matching strategy called Histogram Normalized Absolute Difference (HNAD) for comparing LMBP histograms. Rigorous experiments prove the effectiveness and robustness of LMBP operator. Experiments also prove the superiority of HNAD measure over well-known template matching methods such as L2 norm and Chi-Square measure. We also investigated LMBP for facial expression recognition low resolution. The performance of the proposed approach is tested on well-known datasets CK, JAFFE, and TFEID.