期刊名称:SORT-Statistics and Operations Research Transactions
印刷版ISSN:2013-8830
出版年度:2017
卷号:1
期号:2
页码:373-392
语种:English
出版社:SORT- Statistics and Operations Research Transactions
摘要:Catastrophe bonds are financial instruments designed to transfer risk of monetary losses arising from earthquakes, hurricanes, or floods to the capital markets. The insurance and reinsurance industry, governments, and private entities employ them frequently to obtain coverage. Parametric catastrophe bonds base their payments on physical features. For instance, given parameters such as magnitude of the earthquake and the location of its epicentre, the bond may pay a fixed amount or not pay at all. This paper reviews statistical and machine learning techniques for designing trigger mechanisms and includes a computational experiment. Several lines of future research are discussed.
其他摘要:Catastrophe bonds are financial instruments designed to transfer risk of monetary losses arising from earthquakes, hurricanes, or floods to the capital markets. The insurance and reinsurance industry, governments, and private entities employ them frequently to obtain coverage. Parametric catastrophe bonds base their payments on physical features. For instance, given parameters such as magnitude of the earthquake and the location of its epicentre, the bond may pay a fixed amount or not pay at all. This paper reviews statistical and machine learning techniques for designing trigger mechanisms and includes a computational experiment. Several lines of future research are discussed.