首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Dynamic Radius Species Conserving Genetic Algorithm for Test Generation for Structural Testing
  • 本地全文:下载
  • 作者:Michael Scott Brown ; Michael J. Pelosi
  • 期刊名称:International Journal of Software Engineering & Applications (IJSEA)
  • 印刷版ISSN:0976-2221
  • 电子版ISSN:0975-9018
  • 出版年度:2017
  • 卷号:8
  • 期号:2
  • 页码:121
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Software testing is a critical and labor-intensive activity in software engineering. Much research has beendone to help automate test case generation. This research proposes a new approach to structural test casegeneration. It uses a specialized genetic algorithm called Dynamic-radius Species-conserving GeneticAlgorithm (DSGA) to find a structurally complete set of test cases for the Triangle Classification algorithm.DSGA is a Niche Genetic Algorithm (NGA) that uses a short-term memory structure to store optima. Eachindividual of the NGA represents the inputs for a test case. The fitness function encourages the algorithm tolocate test cases that cover large areas of the structure of the program. A shared fitness encourages theNGA to locate other areas of the structure. DSGA is a novel approach to structurally complete test casegeneration
  • 关键词:Niche Genetic Algorithm; Genetic Algorithm; Software Testing; Automated Test Case Generation;Structural Testing
国家哲学社会科学文献中心版权所有