首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Recommender System for Journal Articles using Opinion Mining and Semantics
  • 本地全文:下载
  • 作者:Anam Sardar ; Javed Ferzund ; Muhammad Asif Suryani
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:12
  • DOI:10.14569/IJACSA.2017.081227
  • 出版社:Science and Information Society (SAI)
  • 摘要:Till date, the dominant part of Recommender Systems (RS) work focusing on single domain, i.e. for films, books and shopping and so on. However, human inclinations may traverse over numerous areas. Thus, utilization practices on related things from various domains can be valuable for RS to make recommendations. Academic articles, such as research papers are the way to express ideas and thoughts for the research community. However, there have been a lot of journals available which recognize these technical writings. In addition, journal selection procedure should consider user experience about the journals in order to recommend users most relevant journal. In this work of journal recommendation system, the data about the user experience targeting various aspects of journals has been gathered which addresses user experience about any journal. In addition, data set of archive articles has been developed considering the user experience in this regard. Moreover, the user experience and gathered data of archives are analyzed using two different frameworks based on semantics in order to have better consolidated recommendations. Before submission, we offer services on behalf of the research community that exploit user reviews and relevant data to suggest suitable journal according to the needs of the author.
  • 关键词:Recommendation system; journal recommendation system; user opinion; sementic similarity; text analysis
国家哲学社会科学文献中心版权所有