期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2017
卷号:8
期号:10
DOI:10.14569/IJACSA.2017.081007
出版社:Science and Information Society (SAI)
摘要:Recently, the rapid development of inexpensive RGB-D sensor, like Microsoft Kinect, provides adequate information for human action recognition. In this paper, a recognition algorithm is presented in which feature representation is generated by concatenating spatial features from human contour of key frames and temporal features from time difference information of a sequence. Then, an improved multi-hidden layers extreme learning machine is introduced as classifier. At last, we test our scheme on the public UTD-MHAD dataset from recognition accuracy and time consumption.