首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Action Recognition using Key-Frame Features of Depth Sequence and ELM
  • 本地全文:下载
  • 作者:Suolan Liu ; Hongyuan Wang
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:10
  • DOI:10.14569/IJACSA.2017.081007
  • 出版社:Science and Information Society (SAI)
  • 摘要:Recently, the rapid development of inexpensive RGB-D sensor, like Microsoft Kinect, provides adequate information for human action recognition. In this paper, a recognition algorithm is presented in which feature representation is generated by concatenating spatial features from human contour of key frames and temporal features from time difference information of a sequence. Then, an improved multi-hidden layers extreme learning machine is introduced as classifier. At last, we test our scheme on the public UTD-MHAD dataset from recognition accuracy and time consumption.
  • 关键词:Action recognition; features; key frame; temporal; extreme learning machine
国家哲学社会科学文献中心版权所有