首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Dimensionality Reduction using Hybrid Support Vector Machine and Discriminant Independent Component Analysis for Hyperspectral Image
  • 本地全文:下载
  • 作者:Murinto ; Nur Rochmah Dyah PA
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:11
  • DOI:10.14569/IJACSA.2017.081176
  • 出版社:Science and Information Society (SAI)
  • 摘要:Hyperspectral image is an image obtain from a satellite sensor. This image has more than 100 bands with a wide spectral range and increased spatial image resolution, providing detailed information on objects or materials that exist on the ground in a specific way. The hyperspectral image is well suited for the classification of the earth’s surface covering due to it. Due to the features of the hyperspectral data, then lately research related to trend hyperspectral data tend to increase. The transformation of the reduction of the dimensions of the original data into a new dimension reduction chamber is often done to overcome the problem of ‘curse of dimensionality’ in which its dimensions tend to increase exponentially. Data is mapped from the original data to a lower dimensionless space through a dimensional reduction procedure which must display the observation input effectively. Therefore, in this research we proposed a hyperspectral dimension hybrid reduction method which adopted Support Vector Machine (SVM) and Discriminant Independent Component Analysis (DICA) techniques to reduce original data in order to obtain better accuracy. By using SVM+DICA is used to reduction dimension hyperspectral images. In this research, we use KNN as classifier. From the experiment obtained that value of average accuracy is 0.7527, overall accuracy is 0.7901, and Kappa is 0.7608 for AVIRIS dataset.
  • 关键词:Classification; discriminant independent component analysis; support vector machine; hyperspectral image
国家哲学社会科学文献中心版权所有