首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Fermentability of Novel Type-4 Resistant Starches in In Vitro System
  • 本地全文:下载
  • 作者:Jennifer M. Erickson ; Justin L. Carlson ; Maria L. Stewart
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2018
  • 卷号:7
  • 期号:2
  • 页码:18
  • DOI:10.3390/foods7020018
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Resistant starches are non-digestible starches that are fermented in the colon by microbiota. These carbohydrates are prebiotic and can be beneficial to consumer health. Many types of resistant starch exist with varying physical properties that may result in differences in fermentability. The objective of this research project was to compare potential prebiotic effects and fermentability of four novel resistant starches using an in vitro fermentation system and measuring changes in total gas production, pH, and formation of SCFAs (short chain fatty acids). Fecal donations were collected from seven healthy volunteers. Four novel resistant starches, modified potato starch (MPS), modified tapioca starch (MTS), and modified maize starches (MMS-1 and MMS-2), were analyzed and compared to polydextrose and short chain fructooligosaccharides (FOS) as controls. After twenty-four hours of fermentation, MPS and MTS responded similarly in gas production (74 mL; 70.6 mL respectively), pH (5.93; 5.93 respectively), and SCFA production (Acetate: 115; 124, Propionate: 21; 26, Butyrate: 29; 31 μmol/mL respectively). While MMS-1 had similar gas production and individual SCFA production, the pH was significantly higher (6.06). The fermentation of MMS-2 produced the least amount of gas (22 mL), with a higher pH (6.34), and lower acetate production (78.4 μmol/mL). All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.
  • 关键词:prebiotics; resistant starch; dietary fiber prebiotics ; resistant starch ; dietary fiber
国家哲学社会科学文献中心版权所有