首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds
  • 本地全文:下载
  • 作者:Ana B. Cerezo ; Ruth Hornedo-Ortega ; M. Antonia Álvarez-Fernández
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2017
  • 卷号:9
  • 期号:3
  • 页码:249
  • DOI:10.3390/nu9030249
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Excessive concentrations of vascular endothelial growth factor (VEGF) trigger angiogenesis, which causes complications such as the destabilization of atherosclerotic plaques and increased growth of tumors. This work focuses on the determination of the inhibitory activity of melatonin and other indolic related compounds on VEGF-induced VEGF receptor-2 (VEGFR-2) activation and an approximation to the molecular mechanism underlying the inhibition. Quantification of phosphorylated VEGFR-2 was measured by ELISA. Migration wound-healing assay was used to determine cell migration of human umbilical vein endothelial cells (HUVECs). This is the first time that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin are proved to significantly inhibit VEGF-induced VEGFR-2 activation in human umbilical vein endothelial cells and subsequent angiogenesis. 3-Indolacetic acid showed the highest inhibitory effect (IC50 value of 0.9704 mM), followed by 5-hydroxytryptophol (35% of inhibition at 0.1 mM), melatonin (30% of inhibition at 1 mM), and serotonin (24% of inhibition at 1 mM). An approximation to the molecular mechanism of the inhibition has been proposed, suggesting that indolic compounds might interact with the cell surface components of the endothelial membrane in a way that prevents VEGF from activating the receptor. Additionally, wound-healing assay revealed that exposure of HUVECs to melatonin and 3-indolacetic acid in the presence of VEGF significantly inhibited cell migration by 87% and 99%, respectively, after 24 h. These data demonstrate that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin would be good molecules for future exploitation as anti-VEGF signaling agents.
  • 关键词:melatonin; serotonin; 3-indolacetic acid; 5-hydroxytryptophol; VEGF; VEGFR-2; anti-angiogenic; HUVEC; migration melatonin ; serotonin ; 3-indolacetic acid ; 5-hydroxytryptophol ; VEGF ; VEGFR-2 ; anti-angiogenic ; HUVEC ; migration
国家哲学社会科学文献中心版权所有