首页    期刊浏览 2024年09月21日 星期六
登录注册

文章基本信息

  • 标题:Comparison of the Micellar Incorporation and the Intestinal Cell Uptake of Cholecalciferol, 25-Hydroxycholecalciferol and 1-α-Hydroxycholecalciferol
  • 本地全文:下载
  • 作者:Charles Desmarchelier ; Marielle Margier ; Damien P. Prévéraud
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2017
  • 卷号:9
  • 期号:10
  • 页码:1152
  • DOI:10.3390/nu9101152
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:In the context of the global prevalence of vitamin D insufficiency, we compared two key determinants of the bioavailability of 3 vitamin D forms with significant biopotencies: cholecalciferol, 25-hydroxycholecalciferol and 1-α-hydroxycholecalciferol. To this aim, we studied their incorporation into synthetic mixed micelles and their uptake by intestinal cells in culture. Our results show that 1-α-hydroxycholecalciferol was significantly more solubilized into mixed micelles compared to the other forms (1.6-fold and 2.9-fold improvement compared to cholecalciferol and 25-hydroxycholecalciferol, respectively). In Caco-2 TC7 cells, the hydroxylated forms were taken up more efficiently than cholecalciferol (p < 0.05), and conversely to cholecalciferol, their uptake was neither SR-BI(Scavenger-Receptor class B type I)- nor NPC1L1 (NPC1 like intracellular cholesterol transporter 1)-dependent. Besides, the apical membrane sodium–bile acid transporter ASBT (Apical Sodium-dependent Bile acid Transporter) was not involved, at least in vitro, in the uptake of any of the three vitamin D forms. Further investigations are needed to identify the uptake pathways of both 1-α-hydroxycholecalciferol and 25-hydroxycholecalciferol. However, considering its high bioavailability, our results suggest the potential interest of using 1-α-hydroxycholecalciferol in the treatment of severe vitamin D deficiency.
  • 关键词:vitamin D; SR-BI; NPC1L1; ASBT; bioavailability; absorption; micelles; Caco-2 cells vitamin D ; SR-BI ; NPC1L1 ; ASBT ; bioavailability ; absorption ; micelles ; Caco-2 cells
国家哲学社会科学文献中心版权所有