Scopoletin was recently shown to stimulate melanogenesis through cAMP-response element-binding protein (CREB) phosphorylation. In this study, we investigated the molecular events of melanogenesis-induced by scopoletin. After exposure to scopoletin, the protein levels of tyrosinase and tyrosianse related protein-1 (TRP-1) were significantly increased in B16F10 cells. The mRNA levels of tyrosinase and microphthalmia-associated transcription factor (MITF) were also enhanced by scopoletin. cAMP production and phosphorylation of p38 mitogen-activated protein kinase (MAPK) were increased by scopoletin treatment. Scopoletin-mediated increase of intracellular melanin and tyrosinase expression were significantly attenuated by protein kinase A (PKA) inhibitors (H-89 and KT5720), while a protein kinase C (PKC) inhibitor (Ro-32-0432) had no effect and a p38 MAPK inhibitor (SB203580) partially blocked the scopoletin-induced intracellular melanin and tyrosinase expression. Moreover, scopoletin synergistically with cell-permeable cAMP analog (dibutyryl cAMP) significantly induced tyrosinase activity and melanin content in B16F10 cells. The silencing of p38 MAPK by small interfering RNA (siRNA) decreased the scopoletin-induced tyrosinase expression in B16F10 cells. These results suggest that scopoletin could induce melanin synthesis through the cAMP/PKA pathway and partially p38 MAPK activation in B16F10 cells.