Currently, the reversible logic circuit is a popular research topic in the field of information processing as it is a most effective approach to minimize power consumption, which can achieve the one-to-one mapping function to identify the input signals from its corresponding output signals. In this letter, we propose and experimentally demonstrate an optical Feynman gate for reversible logic operation using silicon micro-ring resonators (MRRs). Two electrical input signals (logic operands) are applied across the micro-heaters above MRRs to determine the switching states of MRRs, and the reversible logic operation results are directed to the output ports in the form of light, respectively. For proof of concept, the thermo-optic modulation scheme is used to achieve MRR’s optical switching function. At last, a Feynman gate for reversible logic operation with the speed of 10 kbps is demonstrated successfully.