首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Parallelization of Neural Network Training for NLP with Hogwild!
  • 本地全文:下载
  • 作者:Valentin Deyringer ; Alexander Fraser ; Helmut Schmid
  • 期刊名称:The Prague Bulletin of Mathematical Linguistics
  • 印刷版ISSN:0032-6585
  • 电子版ISSN:1804-0462
  • 出版年度:2017
  • 卷号:109
  • 期号:1
  • 页码:29-38
  • DOI:10.1515/pralin-2017-0036
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Neural Networks are prevalent in todays NLP research. Despite their success for different tasks, training time is relatively long. We use Hogwild! to counteract this phenomenon and show that it is a suitable method to speed up training Neural Networks of different architectures and complexity. For POS tagging and translation we report considerable speedups of training, especially for the latter. We show that Hogwild! can be an important tool for training complex NLP architectures.
国家哲学社会科学文献中心版权所有