期刊名称:The Prague Bulletin of Mathematical Linguistics
印刷版ISSN:0032-6585
电子版ISSN:1804-0462
出版年度:2017
卷号:108
期号:1
页码:37-48
DOI:10.1515/pralin-2017-0007
语种:English
出版社:Walter de Gruyter GmbH
摘要:Neural machine translation is a recently proposed approach which has shown competitive results to traditional MT approaches. Standard neural MT is an end-to-end neural network where the source sentence is encoded by a recurrent neural network (RNN) called encoder and the target words are predicted using another RNN known as decoder. Recently, various models have been proposed which replace the RNN encoder with a convolutional neural network (CNN). In this paper, we propose to augment the standard RNN encoder in NMT with additional convolutional layers in order to capture wider context in the encoder output. Experiments on English to German translation demonstrate that our approach can achieve significant improvements over a standard RNN-based baseline.