首页    期刊浏览 2025年05月02日 星期五
登录注册

文章基本信息

  • 标题:A Neural Network Architecture for Detecting Grammatical Errors in Statistical Machine Translation
  • 本地全文:下载
  • 作者:Arda Tezcan ; Véronique Hoste ; Lieve Macken
  • 期刊名称:The Prague Bulletin of Mathematical Linguistics
  • 印刷版ISSN:0032-6585
  • 电子版ISSN:1804-0462
  • 出版年度:2017
  • 卷号:108
  • 期号:1
  • 页码:133-145
  • DOI:10.1515/pralin-2017-0015
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:In this paper we present a Neural Network (NN) architecture for detecting grammatical errors in Statistical Machine Translation (SMT) using monolingual morpho-syntactic word representations in combination with surface and syntactic context windows. We test our approach on two language pairs and two tasks, namely detecting grammatical errors and predicting overall post-editing effort. Our results show that this approach is not only able to accurately detect grammatical errors but it also performs well as a quality estimation system for predicting overall post-editing effort, which is characterised by all types of MT errors. Furthermore, we show that this approach is portable to other languages.
国家哲学社会科学文献中心版权所有