期刊名称:The Prague Bulletin of Mathematical Linguistics
印刷版ISSN:0032-6585
电子版ISSN:1804-0462
出版年度:2017
卷号:108
期号:1
页码:197-208
DOI:10.1515/pralin-2017-0020
语种:English
出版社:Walter de Gruyter GmbH
摘要:Recent work on multimodal machine translation has attempted to address the problem of producing target language image descriptions based on both the source language description and the corresponding image. However, existing work has not been conclusive on the contribution of visual information. This paper presents an in-depth study of the problem by examining the differences and complementarities of two related but distinct approaches to this task: textonly neural machine translation and image captioning. We analyse the scope for improvement and the effect of different data and settings to build models for these tasks. We also propose ways of combining these two approaches for improved translation quality.