期刊名称:The Prague Bulletin of Mathematical Linguistics
印刷版ISSN:0032-6585
电子版ISSN:1804-0462
出版年度:2016
卷号:106
期号:1
页码:31-44
DOI:10.1515/pralin-2016-0010
语种:English
出版社:Walter de Gruyter GmbH
摘要:Referential translation machine (RTM) is a prediction engine used for predicting the performance of natural language processing tasks including parsing, machine translation, and semantic similarity pioneering language, task, and domain independence. RTM results for predicting the performance of parsing (PPP) in out-of-domain or in-domain settings with different training sets and types of features present results independent of language or parser. RTM PPP models can be used without parsing using only text input and without any parser or language dependent information. Our results detail prediction performance, top selected features, and lower bound on the prediction error of PPP.