首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Predicting the Performance of Parsing with Referential Translation Machines
  • 本地全文:下载
  • 作者:Ergun Biçici
  • 期刊名称:The Prague Bulletin of Mathematical Linguistics
  • 印刷版ISSN:0032-6585
  • 电子版ISSN:1804-0462
  • 出版年度:2016
  • 卷号:106
  • 期号:1
  • 页码:31-44
  • DOI:10.1515/pralin-2016-0010
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Referential translation machine (RTM) is a prediction engine used for predicting the performance of natural language processing tasks including parsing, machine translation, and semantic similarity pioneering language, task, and domain independence. RTM results for predicting the performance of parsing (PPP) in out-of-domain or in-domain settings with different training sets and types of features present results independent of language or parser. RTM PPP models can be used without parsing using only text input and without any parser or language dependent information. Our results detail prediction performance, top selected features, and lower bound on the prediction error of PPP.
国家哲学社会科学文献中心版权所有