首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction
  • 本地全文:下载
  • 作者:Jessica L. Thomaston ; Rahel A. Woldeyes ; Takanori Nakane
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:51
  • 页码:13357-13362
  • DOI:10.1073/pnas.1705624114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in “wires” inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collected to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inwardopen state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inwardopen state is less stable. These studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.
  • 关键词:XFEL ; proton channel ; influenza ; membrane protein
国家哲学社会科学文献中心版权所有