首页    期刊浏览 2025年06月28日 星期六
登录注册

文章基本信息

  • 标题:Unsupervised Methods to Improve Aspect-Based Sentiment Analysis in Czech
  • 本地全文:下载
  • 作者:Tomás Hercig ; Tomás Brychcín ; Lukás Svoboda
  • 期刊名称:Computación y Sistemas
  • 印刷版ISSN:1405-5546
  • 出版年度:2016
  • 卷号:20
  • 期号:3
  • 页码:365-375
  • 语种:English
  • 出版社:Instituto Politécnico Nacional
  • 其他摘要:We examine the effectiveness of several unsupervised methods for latent semantics discovery as features for aspect-based sentiment analysis (ABSA). We use the shared task definition from SemEval 2014. In our experiments we use labeled and unlabeled corpora within the restaurants domain for two languages: Czech and English. We show that our models improve the ABSA performance and prove that our approach is worth exploring. Moreover, we achieve new state-of-the-art results for Czech. Another important contribution of our work is that we created two new Czech corpora within the restaurant domain for the ABSA task: one labeled for supervised training, and the other (considerably larger) unlabeled for unsupervised training. The corpora are available to the research community.
  • 其他关键词:Aspect-based sentiment analysis; latent semantics.
国家哲学社会科学文献中心版权所有