首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Efficiency of quantum vs. classical annealing in nonconvex learning problems
  • 本地全文:下载
  • 作者:Carlo Baldassi ; Riccardo Zecchina
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:7
  • 页码:1457-1462
  • DOI:10.1073/pnas.1711456115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions.
  • 关键词:nonconvex optimization ; machine learning ; quantum annealing ; neural networks ; statistical physics
国家哲学社会科学文献中心版权所有