首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Interplay of structure, elasticity, and dynamics in actin-based nematic materials
  • 本地全文:下载
  • 作者:Rui Zhang ; Nitin Kumar ; Jennifer L. Ross
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:2
  • 页码:E124-E133
  • DOI:10.1073/pnas.1713832115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Achieving control and tunability of lyotropic materials has been a long-standing goal of liquid crystal research. Here we show that the elasticity of a liquid crystal system consisting of a dense suspension of semiflexible biopolymers can be manipulated over a relatively wide range of elastic moduli. Specifically, thin films of actin filaments are assembled at an oil–water interface. At sufficiently high concentrations, one observes the formation of a nematic phase riddled with ± 1 / 2 topological defects, characteristic of a two-dimensional nematic system. As the average filament length increases, the defect morphology transitions from a U shape into a V shape, indicating the relative increase of the material’s bend over splay modulus. Furthermore, through the sparse addition of rigid microtubule filaments, one can gain additional control over the liquid crystal’s elasticity. We show how the material’s bend constant can be raised linearly as a function of microtubule filament density, and present a simple means to extract absolute values of the elastic moduli from purely optical observations. Finally, we demonstrate that it is possible to predict not only the static structure of the material, including its topological defects, but also the evolution of the system into dynamically arrested states. Despite the nonequilibrium nature of the system, our continuum model, which couples structure and hydrodynamics, is able to capture the annihilation and movement of defects over long time scales. Thus, we have experimentally realized a lyotropic liquid crystal system that can be truly engineered, with tunable mechanical properties, and a theoretical framework to capture its structure, mechanics, and dynamics.
  • 关键词:lyotropic liquid crystal ; actin ; topological defects ; microtubule ; elasticity
国家哲学社会科学文献中心版权所有