摘要:The shift from childhood to adolescence is characterized by rapid remodeling of the brain and increased risk-taking behaviors. Current theories hypothesize that developmental enhancements in sensitivity to affective environmental cues in adolescence may undermine executive function (EF) and increase the likelihood of problematic behaviors. In the current study, we examined the extent to which EF in childhood predicts EF in early adolescence. We also tested whether individual differences in neural responses to affective cues (rewards/punishments) in childhood serve as a biological marker for EF, sensation-seeking, academic performance, and social skills in early adolescence. At age 8, 84 children completed a gambling task while event-related potentials (ERPs) were recorded. We examined the extent to which selections resulting in rewards or losses in this task elicited (i) the P300, a post-stimulus waveform reflecting the allocation of attentional resources toward a stimulus, and (ii) the SPN, a pre-stimulus anticipatory waveform reflecting a neural representation of a “hunch” about an outcome that originates in insula and ventromedial PFC. Children also completed a Dimensional Change Card-Sort (DCCS) and Flanker task to measure EF. At age 12, 78 children repeated the DCCS and Flanker and completed a battery of questionnaires. Flanker and DCCS accuracy at age 8 predicted Flanker and DCCS performance at age 12, respectively. Individual differences in the magnitude of P300 (to losses vs. rewards) and SPN (preceding outcomes with a high probability of punishment) at age 8 predicted self-reported sensation seeking (lower) and teacher-rated academic performance (higher) at age 12. We suggest there is stability in EF from age 8 to 12, and that childhood neural sensitivity to reward and punishment predicts individual differences in sensation seeking and adaptive behaviors in children entering adolescence.