摘要:In two experiments, we examined the correspondence between the dynamics of metacognitive judgments and classification accuracy when participants were asked to learn category structures of different levels of complexity, i.e., to learn tasks of types I, II and III according to Shepard, Hovland, and Jenkins (1961). The stimuli were simple geometrical figures varying in the following three dimensions: color, shape, and size. In Experiment 1, we found moderate positive correlations between confidence and accuracy in task type II and weaker correlation in task type I and III. Moreover, the trend analysis in the backward learning curves revealed that there is a non-linear trend in accuracy for all three task types, but the same trend was observed in confidence for the task type I and II but not for task type III. In Experiment 2, we found that the feeling-of-warmth judgments (FOWs) showed moderate positive correlation with accuracy in all task types. Trend analysis revealed a similar non-linear component in accuracy and metacognitive judgments in task type II and III but not in task type I. Our results suggest that FOWs are a more sensitive measure of the progress of learning than confidence because FOWs capture global knowledge about the category structure, while confidence judgments are given at the level of an individual exemplar.