首页    期刊浏览 2025年07月02日 星期三
登录注册

文章基本信息

  • 标题:Empirical Scenarios of Fake Data Analysis: The Sample Generation by Replacement (SGR) Approach
  • 本地全文:下载
  • 作者:Pastore, Massimiliano ; Nucci, Massimo ; Bobbio, Andrea
  • 期刊名称:Frontiers in Psychology
  • 电子版ISSN:1664-1078
  • 出版年度:2017
  • 卷号:8
  • 页码:482-497
  • DOI:10.3389/fpsyg.2017.00482
  • 出版社:Frontiers Media
  • 摘要:Many self-report measures of attitudes, beliefs, personality, and pathology include items whose responses can be easily manipulated or distorted, as an example in order to give a positive impression to others, to obtain financial compensation, to avoid being charged with a crime, to get a job, or else. This fact confronts both researchers and practitioners with the crucial problem of biases yielded by the usage of standard statistical models. The current paper presents three empirical applications to the issue of faking of a recent probabilistic perturbation procedure called Sample Generation by Replacement (SGR; Lombardi and Pastore, 2012). With the intent to study the behavior of some statistics under fake perturbation and data reconstruction processes, ad hoc faking scenarios were implemented and tested. Overall, results proved that SGR could be successfully applied both in the case of research designs traditionally proposed in order to deal with faking (e.g., use of fake-detecting scales, experimentally induced faking, or contrasting applicants versus incumbents), and in the case of ecological research settings, where no information as regards faking could be collected by the researcher or the practitioner. Implications and limitations are presented and discussed.
  • 关键词:Sample generation by replacement; Fake data; self; report measures; monte carlo; Scenario; based methodology
国家哲学社会科学文献中心版权所有