According to the forecasts of numerous regional models (eg. REMO, ALADIN, PREGIS), the number of predicted rainfall events decreases, but they are not accompanied by considerably less precipitation. It represents an increase in rainfall intensity. It is logical to ask (if the limitations of the models make it possible) to what extent rainfall intensity is likely to change and where these changes are likely to occur in the long run. Rain intensity is considered to be one of the key causes of soil erosion. If we know which areas are affected by more intense rain erosion, we can identify the areas that are likely to be affected by stronger soil erosion, and we can also choose effective measures to reduce erosion. This information is necessary to achieve the neutral erosion effect as targeted by the EU. We collected the precipitation data of four stations every 30 minute between 2000 and 2013, and we calculated the estimated level of intensity characterizing the Carpathian Basin. Based on these data, we calculated the correlation of the measured data of intensity with the values of the MFI index (the correlation was 0.75). According to a combination of regional climate models, precipitation data could be estimated until 2100, and by calculating the statistical relationship between the previous correlation and this data sequence, we could estimate the spatial and temporal changes of rainfall intensity.