首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Clustering Method of Highly Dimensional Patent Data Using Bayesian Approach
  • 本地全文:下载
  • 作者:Sunghae Jun
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2012
  • 卷号:9
  • 期号:1
  • 出版社:IJCSI Press
  • 摘要:Patent data have diversely technological information of any technology field. So, many companies have managed the patent data to build their RD policy. Patent analysis is an approach to the patent management. Also, patent analysis is an important tool for technology forecasting. Patent clustering is one of the works for patent analysis. In this paper, we propose an efficient clustering method of patent documents. Generally, patent data are consisted of text document. The patent documents have a characteristic of highly dimensional structure. It is difficult to cluster the document data because of their dimensional problem. Therefore, we consider Bayesian approach to solve the problem of high dimensionality. Traditional clustering algorithms were based on similarity or distance measures, but Bayesian clustering used the probability distribution of the data. This idea of Bayesian clustering becomes a solution for the problem in this research. To verify the performance of this study, we will make experiments using retrieved patent documents from the United States Patent and Trademark Office.
  • 关键词:Patent Clustering; Bayesian Clustering; Highly Dimensional Problem; Probability Distribution; Bayesian Learning
国家哲学社会科学文献中心版权所有