首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:A pragmatic approach on association rule mining and its effective utilization in large databases
  • 本地全文:下载
  • 作者:Biswaranjan Nayak ; Srinivas Prasad
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2012
  • 卷号:9
  • 期号:3
  • 出版社:IJCSI Press
  • 摘要:This paper deals with the effective utilization of association rule mining algorithms in large databases used for especially business organizations where the amount of transactions and items plays a crucial role for decision making. Frequent item-set generation and the creation of strong association rules from the frequent item-set patterns are the two basic steps in association rule mining. We have taken suitable illustration of market basket data for generating different item-set frequent patterns and association rule generation through this frequent pattern by the help of Apriori Algorithm and taken the same illustration for FP-Growth association rule mining and a FP-Growth Tree has been constructed for frequent item-set generation and from that strong association rules have been created. For performance study of Apriori and FP-Tree algorithms, experiments have been performed. The customer purchase behaviour i.e. seen in the food outlet environments is mimicked in these transactions. By using the synthetic data generation process, the observations has been plotted in the graphs by taking minimum support count with respect to execution time. From the graphs it has that as the minimum support values decrease, the execution times algorithms increase exponentially which is happened due to decrease in the minimum support threshold values make the number of item-sets in the output to be exponentially increased. It has been established from the graphs that the performance of FP-Growth is better than Apriori algorithm for all problem sizes with factor 2 for high minimum support values to very low level support magnitude.
  • 关键词:Association Rule Mining; Confidence; Support; Data Mining
国家哲学社会科学文献中心版权所有