期刊名称:International Journal of Computer Science Issues
印刷版ISSN:1694-0784
电子版ISSN:1694-0814
出版年度:2013
卷号:10
期号:1
出版社:IJCSI Press
摘要:With the advancement in image capturing device, the image data been generated at high volume. If images are analyzed properly, they can reveal useful information to the human users. Content based image retrieval address the problem of retrieving images relevant to the user needs from image databases on the basis of low-level visual features that can be derived from the images. Grouping images into meaningful categories to reveal useful information is a challenging and important problem. We apply the algorithm to content-based image retrieval and compare its performance with that of the k-means clustering algorithm. Unlike the k-means algorithm, our algorithm optimizes on both intra-cluster and inter-cluster similarity measures. It has three passes and each pass has the same time complexity as an iteration in the k-means algorithm. Our experiments on a bench mark image data set reveal that our algorithm improves on the recall at the cost of precision.
关键词:Content based image Retreival System; clustering; k;means algorithm; medical image retrieval